MADRID SPAIN 20-24 october 2023

UNIVERSITEIT VAN PRETORIA UNIVERSITY OF PRETORIA YUNIBESITHI YA PRETORIA

261P - Dysregulation of immune checkpoint proteins in newly- diagnosed early breast cancer patients undergoing neoadjuvant chemotherapy. A comparison between TNBC and non-TNBC patients.

Background

- For effective killing of cancer cells in an anticancer immune Table 1. Patient Characteristics response, a series of events involving different immune cells needs to be initiated and allowed to proceed.
- The steps in the cancer immunity cycle start with the release of tumor cell antigens, which are recognized by and lead to the killing of cancer cells by cytotoxic T cells.
- This immune response is modulated by a variety of stimulatory and inhibitory factors; T cells need two signals for activation: binding of the TCR (T-cell receptor) to the MHC (major histocompatibility complex) and activation of co-stimulatory molecules;
- Immune checkpoints can stimulate or inhibit these events thereby regulating the functions of immune cells;
- Accordingly, checkpoints play important roles in the maintenance of immune homeostasis;
- Examples of stimulatory molecules include TCR/MHC, CD137L/ CD137 and OX40L/CD40, while CTLA-4/CD80 or CD86 and PD-1/PD-L1 are potent inhibitory checkpoints.
- Increasing numbers of novel regulatory receptors and ligands have recently been described and are summarized in Figure 1;
- ▶ Recently, a series of soluble systemic immune checkpoint molecules (ICM) such as sCTLA-4 (soluble CTLA-4), sPD-1 (soluble PD-1) and others have been identified that can be measured in plasma.

Aim & Methods

- The circulating levels of 16 immune checkpoint-related protein panels were profiled in 72 early breast cancer patients (patient characteristics are summarized in Table 1) and compared those of 45 healthy controls.
- The sICMs comprised six co-inhibitory (CTLA-4, BTLA, LAG-3, PD-1, PDL-1, and TIM-3), eight co-stimulatory (CD27, CD28, CD40, CD80, CD86, GITR, GITRL and ICOS) proteins, and the two dual-active sICMs, HVEM and TLR2.
- For the current analysis, we compared the sICM's on patients with TNBC vs non-TNBC patients.
- Ethics approval was granted by the Research Ethics Committee of the Faculty of Health Sciences, University of Pretoria. Informed consent was obtained from all patients and control participants.

Laboratory Method

- Plasma levels of immune-oncology checkpoints were assayed using Bio-Bio-Plex suspension Bead Array platforms (Milliplex® or Bio-Rad® human magnetic bead panels).
- The methods were followed according to the manufacturer's specifications and the data was analysed using Bio-Plex Manager software 6.0 and results were reported as pg/mL.

Statistical Methods

- The primary hypothesis was that there was a significant difference in the plasma levels of soluble immune checkpoints between early breast cancer patients' pre-treatment, post-neoadjuvant chemotherapy (NAC), and post-surgery.
- Data was prospectively obtained, and levels were compared between pre-treatment, post-NAC, post-surgery, and healthy controls using non-parametric tests (Mann-Whitney & Kruskal-Wallis).
- Descriptive statistics were used to tabulate patient characteristics. The Mann-Whitney U-test was used to compare levels of the various test biomarkers between breast cancer patients and healthy controls. P < .05 was considered statistically significant.
- ▶ NCSS software version 11 for Windows (USA) was used for statistical analyses.

Results

Patient Characteristics			F	Patient Charac	teristics		
Full cohort (n=72) Non-TNBC (n=52) (n=20)		Full cohort	(n=72)	Non-TNBC (n=20)	TNBC (n=52)		
Age (years) 54	4 [29-85]	33 [20-72]	29 [52-85]	Age (years) 54	4 [29-85]	33 [20-72]	29 [52-85]
Menopausal Status				Glands	5		
Peri-menopausal	1 (1%)	100%	0%	Negative	36 (50%)	19%	81%
Pre-menopausal	46 (64%)	74%	26%	Positive	36 (50%)	36%	64%
Post-menopausal	25 (35%)	64%	36%		Estrogen S	tatus	
	Biological	Туре		Negative	53 (74%)	8%	92%
Her2 positive	10 (14%)	100%	0%	Positive	19 (26%)	84%	16%
Luminal A	1 (1%)	100%	0%	Progesterone Status			
Luminal B	9 (13%)	100%	0%	Negative	62 (86%)	16%	84%
TNBC	52 (72%)	0%	100%	Positive	10 (14%)	100%	0%
	Grade				Her2 Status	Status	
Ι	1 (1%)	0	100%	Negative	62 (86%)	16%	84%
II	20 (28%)	40%	60%	Positive	10 (14%)	100%	0%
III	49 (68%)	22%	78%	Ki-	67 mean = 50°	% [6-100%]	
Unknown	2 (3%)	50%	50%	15 - 39%	23 (32%)	48%	52%
	Stage			≤ 14%	3 (4%)	67%	33%
Ι	12 (17%)	17%	83%	≥ 40%	45 (63%)	16%	84%
IIA	32 (44%)	28%	72%	Unknown	1 (1%)	0%	100%
IIB	20 (28%)	35%	65%				
III	8 (11%)	25%	75%				

Figure 2. TIM-3

Figure 3. LAG-3

	Patients	Median pg/ml	CL Median 95%	<i>p</i> -value	
HVEM Pre-	Non-TNBC (20)	1754	1389 - 2143	0,5214	
treatment	TNBC (51)	1880	1674 - 2196		
HVEM Post- treatment	Non-TNBC (20)	4029	3218 - 5019	0,8900	
	TNBC (51)	4047	3571 - 4445		
HVEM Post- surgery	Non-TNBC (20)	4076	3584 - 5172	0 4592	
	TNBC (51)	3872	3350 - 4399	0,4582	

Table 3. TIM-3

	Patients	Median pg/ml	CL Median 95%	<i>p</i> -value
TIM-3 Pre-	Non-TNBC (20)	3305	2757 - 549	0,4067
treatment	TNBC (51)	4057	3145 - 4674	
TIM-3 Post-	Non-TNBC (20)	10245	8642 - 12229	0,3522
treatment	TNBC (51)	9688	8415 - 10516	
TIM-3 Post- surgery	Non-TNBC (20)	10179	8877 - 12790	0 1161
	TNBC (51)	9339	8047 - 11178	0,1101

Table 4. LAG-3

	Patients	Median pg/ml	CL Median 95%	<i>p</i> -value
LAG-3 Pre-	Non-TNBC (20)	139392	91752 - 225360	0,4357
treatment	TNBC (51)	125630	91568 - 180925	
LAG-3 Post-	Non-TNBC (20)	597519	324092 - 803830	0,1554
treatment	TNBC (51)	451658	267725 - 521630	
LAG-3 Post- surgery	Non-TNBC (20)	500133	342189 - 611907	0 0 0 0 7
	TNBC (51)	500133	450708 - 559532	0,9297

Bernardo Leon Rapoport ^{1,2}, Helen C Steel ², Carol Benn ³, Simon Nayler ⁴, Teresa Smit ¹, Liezl Heyman ¹, Annette J Theron ², Nomsa Hlatswayo ², Luyanda LI Kwofie ², Pieter Meyer², Ronald Anderson²

¹ The Medical Oncology Centre of Rosebank, Johannesburg, South Africa; ² University of Pretoria, Department of Immunology, Pretoria, South Africa; ³ The Netcare Breast Centre of Excellence, Netcare Milpark Hospital, Johannesburg, South Africa; ⁴ Gritzman & Thatcher, Johannesburg, South Africa

Figure 6. CD28

Figure 7. CD40

Figure 8. ICOS

Table 5.	PD-L1

	Patients	Media pg/m
PD-L1 Pre-	Non-TNBC (20)	1946
treatment	TNBC (51)	1637
PD-L1 Post-	Non-TNBC (20)	5489
treatment	TNBC (51)	4687
PD-L1 Post-	Non-TNBC (20)	5495
surgery	TNBC (51)	4953

Table 6. GITR

Time Point

	Patients	Median pg/ml	CL Median 95%	<i>p</i> -value
GITR Pre-	Non-TNBC (20)	1431	618 - 2569	0.0001
treatment	TNBC (51)	1602	818 - 2153	0,0001
GITR Post- treatment	Non-TNBC (20)	4922	3881 - 8394	0,2227
	TNBC (51)	3852	3666 - 5053	
GITR Post- surgery	Non-TNBC (20)	5803	1869 - 8851	0 6500
	TNBC (51)	4085	3292 - 6046	0,0099

Table 7. CD28

	Patients	Median pg/ml	CL Median 95%	<i>p</i> -value
CD28 Pre-	Non-TNBC (20)	30028	21202 - 49506	0 5031
treatment	TNBC (51)	34140	29326 - 43474	0,5951
CD28 Post- treatment	Non-TNBC (20)	50298	40334 - 82883	0 2200
	TNBC (51)	43184	28182 - 51220	0,2299
CD28 Post- surgery	Non-TNBC (20)	60680	25720 - 80046	0 0200
	TNBC (51)	47413	34830 - 64706	0,9399

Table 8. CD40

	Patients	Median pg/ml	CL Median 95%	<i>p</i> -value
CD40 Pre-	Non-TNBC (20)	1428	1226 - 2068	0,9799
treatment	TNBC (51)	1526	1263 - 1840	
CD40 Post- treatment	Non-TNBC (20)	2212	1896 - 3040	0,2019
	TNBC (51)	1925	1648 - 2139	
CD40 Post- surgery	Non-TNBC (20)	2409	1641 - 3237	0,3654
	TNBC (51)	2009	1735 - 2323	

Table 9. ICOS

	Patients	Median pg/ml	CL Median 95%	<i>p</i> -value
ICOS Pre-	Non-TNBC (20)	15010	10665 - 24082	0.0500
treatment	TNBC (51)	15268	11446 - 22087	0,0599
ICOS Post- treatment	Non-TNBC (20)	32727	26231 - 38116	0,1103
	TNBC (51)	22480	19707 - 30245	
ICOS Post- surgery	Non-TNBC (20)	33841	13999 - 52000	0 6790
	TNBC (51)	29598	23673 - 33124	0,0782

FNBC patients

non-TNBC patients.

Conclusions

> We previously demonstrated low levels of co-stimulatory and co-inhibitory sICMs in newly diagnosed, nonmetastatic BC patients.

Novel findings

- Following treatment with NAC, the sICMs levels increase substantially.
- In the case of co-stimulatory sICMs, indicative of an immune-restorative mechanism.
- > The pattern of co-inhibitory sICMs (up to 4-fold elevation of PD-L1, LAG-3, TIM-3, and HVEM), might be indicative of immune-therapeutic resistance.
- There are no significant differences between TNBC and non-TNBC patients.

The Medical Oncology Centre of Rosebank Personalised Cancer Care

Future Research

> Combination approaches may be required to overcome tumor immune inhibitory mechanisms.