



The Medical Oncology Centre

# and Systemic Inflammatory Stress as potential contributors to immune suppression and generalized Tumorigenesis in a cohort of ( **South African Xeroderma Pigmentosum patients** Mahlatse C. M. Kgokolo<sup>1</sup>, Katherine Anderson<sup>1</sup>, Shalate C. Siwele<sup>1</sup>, Helen C. Steel<sup>2</sup>,

Luyanda L. I. Kwofie<sup>2,3</sup>, Mike M. Sathekge<sup>4</sup>, Pieter W. A. Meyer<sup>2,3</sup>, Bernardo L. Rapoport<sup>2,5</sup>, **Ronald Anderson**<sup>2</sup>

<sup>1</sup> Department of Dermatology, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa, <sup>2</sup> Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa, <sup>3</sup> Tshwane Academic Division of the National Health Laboratory Service, Pretoria, South Africa, <sup>4</sup> Department of Nuclear Medicine, Faculty of Nuclear Medicine, Faculty of Health Sciences, University of Pretoria and Steve Biko Academic Hospital, Pretoria, South Africa, <sup>5</sup> The Medical Oncology Centre of Rosebank, Johannesburg, South Africa

### Background

- Xeroderma Pigmentosum (XP), an autosomal recessive disorder characterized by ultraviolet radiationinduced abnormalities of DNA excision and repair pathways is
- associated with the early development of cutaneous cancers.
- Intracellular oxidative stress has also been proposed as a contributor to the occurrence of skin cancers.
- Little is known about the possible augmentative contributions of chronic inflammation, immune suppression, and oxidative stress to the pathogenesis of malignancies associated with other subtypes of XP.

## Methods

The study population consisted of a total of 23 South African XP patients attending the Dermatology Screening Clinic at Steve Biko Academic Hospital, Pretoria, South Africa (Table 1). All results were compared to healthy controls (Table 2).

Table 3. Plasma concentrations of 8-hydroxy-2-deoxyguanosine (8-OH-dG) in patients with XP and sub-groups of healthy non-smoking and smoking control subjects.

| Group                                        | Plasma concentrations of 8-OH-do<br>(pg/mL) |  |  |  |
|----------------------------------------------|---------------------------------------------|--|--|--|
| XP patients (n=19)                           | 4701.56 (4085.27-5697.42)*                  |  |  |  |
| Non-smoking controls (n=6)                   | 7078.80 (5831.85-9233.74)                   |  |  |  |
| Smoking controls (n=6)                       | 6996.42 (6352.05-8418.11)                   |  |  |  |
| Combined group of control subjects<br>(n=12) | 6996.42 (5859.97-8838.92)+                  |  |  |  |

- Whole venous blood samples were collected in ethylenediaminetetraacetic acid (EDTA) vacutainers on different dates in two batches of varying sizes during September 2019 and November 2020 and processed promptly to separate the plasma component by centrifugation and stored at minus 70°C.
- Biomarkers measured in XP patients and healthy controls included the cytokines, interleukins (ILs)-2, -4, -6, -10, interferon-g (IFN-g), and tumor necrosis factor-a (TNF-a), C-reactive protein (CRP), and cotinine.
- These biomarkers were measured in plasma using immunofluorimetric, nephelometric, and ELISA procedures.
- Informed consent was obtained from all the adult patients and from the parents and guardians of the affected children, as well as from the healthy control participants mentioned below, all of whom fully understood the purpose of the study, which was undertaken in full compliance with the 1964 Declaration of Helsinki.
- Ethics approval was granted by The Research Ethics Committee, Faculty of Health Sciences, University of Pretoria (Ethics Committee Approval Numbers 326/2016, 251/2019 and 510/ 2020).

#### Results

Immune suppression was detected according to the levels of five soluble inhibitory immune checkpoint molecules (ICM) (CTLA-4, PD-1, PD-L1, LAG-3, and TIM-3), as well as those of vitamin D, while oxidative stress was determined according to the circulating levels of the DNA adduct, 8-hydroxy-2-deoxyguanosine (8-OH-dG).

Table 1. Phenotypic and genotypic characteristics of XP patients.

|           |     | Age   |         | Clinical manifestations |            | ns                |
|-----------|-----|-------|---------|-------------------------|------------|-------------------|
|           |     | onset | current | skin                    | mouth      | eye involvement   |
| XPC famil | ies |       |         |                         |            |                   |
| 03        | F   | 18 m  | 19 y    | BCC SCC                 | tongue/lip | keratopathy/tumor |

\*Results expressed as the median values in pg/mL plasma with 25% and 75% IQRs. +P<0.001 for comparison of the XP patient group with the combined group of control subjects.

Table 4. Comparison of the plasma levels of TNF-a, IL-6 and IL-10 in the subgroups of XP patients with normal and elevated levels of CRP.

| Cytokines (pg/mL) |                    | XP Patients |            |  |
|-------------------|--------------------|-------------|------------|--|
|                   | Elevated CRP (n=8) | Normal      | CRP (n=11) |  |
| TNF -α            | 7.66 (6.75-11.43)* | 6.27 (5     | 5.56-7.11) |  |
| IL-6              | 2.77 (2.17-4.43)   | 2.02 (1     | .92-2.27)  |  |
| IL-10             | 1.59 (0.62-2.03)   | 0.62 (0     | ).62-0.62) |  |

\*Results expressed as the median values in pg/mL plasma with 25% and 75% IQRs.

Table 5. Comparison of the concentrations of the test soluble inhibitory immune checkpoints in plasma samples from control participants and Xeroderma Pigmentosum patients.

| Checkpoints | Control Participants (n=5) | Xeroderma Pigmentosum<br>Patients (n=15) | P≤     |
|-------------|----------------------------|------------------------------------------|--------|
| CTLA-4      | 418.42 (310.17–451.39)*    | 1550.09 (612.46–2891.79)                 | 0.0001 |
| PD-1        | 7664.25 (4364.5–9932.47)   | 16480.11 (11163.3–34197.63)              | 0.001  |

| 04          | F    | 6 m   | 18 y | BCC SCC                     | tongue            | enucleation/tumor                     |
|-------------|------|-------|------|-----------------------------|-------------------|---------------------------------------|
| 06          | F    | 9 m   | 10 y | BCC SCC                     | tongue            | corneal scarring                      |
| 08          | Μ    | 2 y   | 6 y  | BCC SCC                     | tongue            | keratopathy                           |
| 10          | Μ    | 2 y   | 8 y  | BCC SCC                     | tongue            | corneal scarring                      |
| 11          | F    | 3 у   | 16 y | BCC SCC                     | tongue            | corneal scarring                      |
| 12          | F    | 2 y   | 8 y  | BCC SCC                     | tongue/lip        | keratopathy                           |
| 14          | Μ    | -     | 3 у  | none                        | none              | photophobia                           |
| 15          | Μ    | 1 y   | 10 y | BCC SCC                     | tongue            | corneal scarring                      |
| 16&17       | Μ    | 2 y   | 9 y  | BCC SCC                     | tongue            | keratoconjunctivitis                  |
| 18          | F    | 1 y   | 6 y  | BCC SCC                     | none              | fibrosis                              |
| 19          | F    | 9 m   | 6 y  | BCC SCC                     | lip               | eyelid tumor                          |
| XPD familie | es   |       |      |                             |                   |                                       |
| 05          | Μ    | -     | 4 y  | freckling/sun sensitivity   | none              | keratopathy/enucleation               |
| 09          | F    | -     | 10 y | freckling/sun sensitivity   | none              | photophobia/MR                        |
| XPE family  | ,    |       |      |                             |                   |                                       |
| 01          | F    | -     | 51 y | freckling/sun sensitivity   | none              | none                                  |
| 02          | F    | -     | 48 y | freckling/sun sensitivity   | none              | none                                  |
| Other famil | lies |       |      |                             |                   |                                       |
| 07          | F    | Birth | 4 y  | freckling/skin xerosis      | none              | none                                  |
| 13          | F    | -     | 6 y  | freckling                   | none              | none                                  |
| 20          | Μ    | 2 y   | 5 y  | SCC                         | tongue/lip        | photophobia                           |
| 21          | F    | 8 m   | 2 y  | SCC                         | none              | keratopathy/tumor/corneal<br>scarring |
| 22          | Μ    | 3 у   | 9 y  | SCC                         | tongue/lip        | tumor/photophobia                     |
| 23          | Μ    | 3 у   | 7 y  | freckling/actinic keratosis | Actinic cheilitis | photophobia                           |

| PD-L1 | 1325.81 (271.92–3665.64)         | 6143.29 (3954.88–9192.49)         | 0.005  |
|-------|----------------------------------|-----------------------------------|--------|
| LAG-3 | 423768.0 (181603.8–<br>843313.7) | 839880.1 (671236.5–<br>1150400.0) | 0.032  |
| TIM-3 | 2687.71 (2594.45–3496.56)        | 6648.43 (5670.46–9712.61)         | 0.0005 |

\*Results expressed as the median values in pg/mL plasma with 25% and 75% IQRs.

Figure 1. Box and whisker plots showing a comparison of the plasma concentrations as pg/mL of the five soluble inhibitory immune checkpoints, CTLA-4, PD-1, PD-L1, LAG-3 and TIM-3 in control subjects relative to those of the cohort of XP patients.



F, female; M, male; m, month; y, year; BCC, basal cell carcinoma; SCC, squamous cell carcinoma; MR, mental retardation.

Table 2. Control group characteristics

| Analysis                                             | Patients | Male | Female | Ethnicity | Age (mean)       |
|------------------------------------------------------|----------|------|--------|-----------|------------------|
| 8-hydroxy-2- deoxyguanosine (8-OH-dG)<br>Non-smoking | 6        | 0    | 6      | African   | 30.3 ± 5.5 years |
| 8-hydroxy-2- deoxyguanosine (8-OH-dG)<br>Smoking     | 6        | 5    | 1      | African   | 29.2 ± 4.3 years |
| Cytokines (all non-smoking)                          | 15       | 6    | 9      | African   | 32.5 ± 4.8 years |
| Immune Checkpoints                                   | 5        | 2    | 3      | African   | 25.0 ± 6.3 years |
| Vitamin D                                            | 2        | 0    | 2      | Caucasian | 53 ± 7.1 years   |

#### Conclusions

The findings of increased levels of pro-inflammatory cytokines and, in particular, those of the soluble ICM, in the setting of decreased vitamin D and moderately elevated levels of CRP in XP patients suggest a possible secondary role of ongoing, inflammatory stress and immune suppression in the pathogenesis of XP-associated malignancies.

SAIS Conference, Immunology Rediscovered: Breakthroughs in Immunology; October 2 - 4, 2022; Muldersdrift **Corresponding author:** <u>bernardo.rapoport@up.ac.za</u>