

Background

- Female breast cancer (BC) has surpassed lung cancer as the most commonly diagnosed cancer, with an estimated 2.3 million new cases (11.7%) deaths 684,996 (6,9%) [Global Cancer Statistics 2020].
- ► Heterogeneity of breast cancer individualized treatment approaches but also challenges.
- Molecular subtypes not only determine the clinical characteristics, treatment and prognosis of the patient, but also the tumorinfiltrating lymphocytes found in the tumor microenvironment.

Figure 1. Different molecular subtypes of breast cancer*.

* https://www.researchgate.net/figure/Different-molecular-subtypes-of-breast-cancer_fig1_343725505

Background - Survival

- > Even though the physiological conditions that stimulate the growth of cancer cells are not clearly understood, we know the development of malignant tumors is controlled by a complex biologic system, involving the interaction between tumor cells, stromal cells and the host's inflammatory cells.
- Checkpoint proteins regulate the immune system.
- > Breast cancer cells exploit the up-regulation or down-regulation of these proteins to evade anti-tumor immune responses.
- > Soluble forms of immune checkpoint molecules (ICM) can be measured in human plasma; however, their biological and clinical significance remains essentially unknown.
- > The ability to reliably measure serum based immune mediators adds tremendous value in this field of research.

Metastatic breast cancer is associated with increased levels of soluble inhibitory immune checkpoint proteins and decreased levels of soluble stimulatory immune checkpoint proteins. Teresa Smit², Bernardo L. Rapoport^{1,2}, Helen C. Steel¹, Liezl Heyman^{1,2}, Carol A. Benn³, Ronald Anderson¹

¹ Department of Immunology, School of Medicine, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa. ² The Medical Oncology Centre of Rosebank, Saxonwold, Johannesburg, South Africa. ³ Netcare Breast Care Centre, 1 Jan Smuts Avenue, Parktown, Johannesburg, 2193, South Africa.

Methods

- > The present study was a pilot study, aimed to measure the ICM in metastatic BC patients and compare them to healthy controls.
- ▶ Soluble forms of ICM were measured using Multiplex® bead array and ELISA technologies.
- > Plasma samples from 20 metastatic breast cancer (MBC) patients and 45 healthy controls were analyzed for each protein.
- Data was prospectively obtained.
- Measured levels were compared between MBC patients and healthy controls using a non-parametric test (Mann-Whitney).
- p-values below 0.05 were considered statistically significant.

Results

Table 1. Patient Characteristics

Patient Characteristics n=20						
Age 53 (34-79)						
Neutrophil Lymphocyte Ratio (NLR)						
Median Age	3.18					
Range	0.35-10.97					
Metastatic Sites	n (%)					
Liver	10 (50%)					
Bone	8 (40%)					
Lung	6 (30%)					
Other (brain, rectal, nodal, skin)	4 (20%)					
ECOG	n (%)					
PS=0	11 (55%)					
PS=1	7 (35%)					
PS=2	2 (1%)					
≥ 40%	45 (63%)					
Unknown	1 (1%)					

- ▶ The median age of the cohort was 53 years (range 34-79 years).
- The main metastatic sites included liver (10 pts), bone (8 pts), and lung (6pts), with the brain-, nodal-, rectum- and skin metastasis presenting in 1 patient each.
- The performance status was as follows; PS=0 (11 patients), PS=1 (7 patients), and PS=2 (1 patients).
- The median neutrophil-lymphocyte ratio (NLR) was 3.18 (range 0.35 – 10.97).

Table 2. Comparing the median levels of systemic soluble immune checkpoints in metastatic breast cancer patients with those of healthy controls

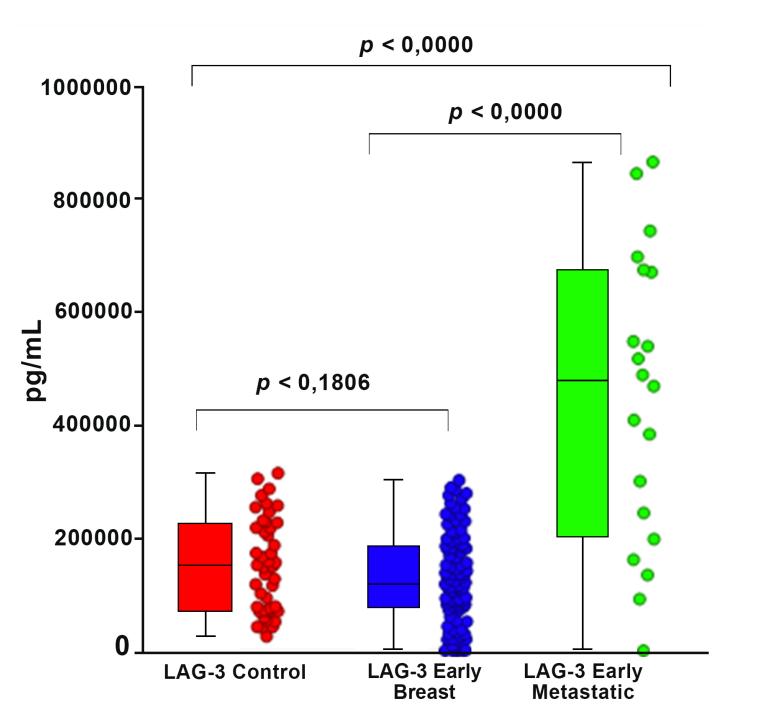
	Metastatic Breast Ca		Metastatic Breast Cancer (n=20)	Controls (n=4	45)	
	ICM		Median pg/ml (95%Cl)	Median pg/ml	(95%CI)	<i>p</i> value
Co-stimulatory	CD27	DOWN	2364,87 (1214,96 - 4249,63)	4577,35 (3391,13 - 5784,85)		0,0039
	CD28	DOWN	21106,26 (13421,92 - 36668,75)	46135,18 (27210,29 - 67544,1)		0,0069
	CD40	DOWN	1285,74 (836,51 - 1924,37)	1977,68 (1404,82 - 2569,56)		0,0022
	ICOS	DOWN	16001,67 (5033,1 - 25988,1)	26506,65 (15897,52 - 31725,99)		0,0157
	GITR	DOWN	1621,68 (266,85 - 2390,84)	3797,68 (1993,96 - 5396,86)		0,0011
	GITRL	DOWN	3207,48 (1092,21 - 4795,97)	7151,12 (1092,21 - 4795,97)		0,0000
	CD86	DOWN	2930,8 (762,93 - 5579,81)	14297,09 (9391,46 - 20525,14)		0,0000
	CD80	DOWN	1833,18 (459,93 - 3030,69)	2329,77 (1395,01 - 3042	2,87)	0,0992
Co-inhibitory	PD-1	DOWN	13350,79 (3695,61 - 20379,62)	14917,48 (7874,92 - 2179	5,02)	0,2325
	PD-L1	DOWN	1616,5 (546,89 - 2807,31)	3342,62 (2628,64 - 4750	9,96)	0,0002
	CTLA-4	DOWN	910,96 (220,6 - 1742,48)	2618,23 (1578,44 - 3110	,47)	0,0002
	TIM-3	UP	7438,2 (6430,35 - 9885,27)	5046,87 (4732,72 - 5958	8,87)	0,0001
	LAG-3	UP	480708,67 (245454,27 - 673316,46)	150416,02 (94508,53 - 1879		0,0000
	BTLA	DOWN	12380,49 (2788,14 - 17513,4)	18147,26 (11461,86 - 2518	0,69)	0,0145
Dual	TLR-2	DOWN	19061,48 (10368,32 - 33291,28)	30477,2 (20928,44 - 5030	02,64)	0,0039
	HVEM	DOWN	2115,98 (1744,07 - 2332,1)	2290,19 (2079,46 - 2618	3,44)	0,0626
Other	Arginase	DOWN	25,52 (25,52 - 25,52)	78,64 (38,03 - 195,4	.7)	0,0033
	RANTES	UP	51,95 (39,31 - 62,88)	48,72 (36,3 - 66,96	5)	0,4861
	TGF-β1	DOWN	5443,42 16184,42 - 36390,72	23785,83 (3613,79 - 11090	0,75)	0,0000

Conclusions

> With this pilot study we identified low levels of CD27, CD28, CD40, ICOS, GITR, GITRL, CD86, PD-L1, CTLA-4, BTLA, arginase, and TGF-β1, and high levels of TIM-3 and LAG-3 immune checkpoint molecules in MBC patients compared to healthy controls.

> These results indicate that a down-regulation of soluble ICM pathways and an up-regulation of some inhibitory ICM pathways are associated with MBC patients.

> To our knowledge, this is the first study to describe soluble immune checkpoint molecules in MBC patients.


2022 SITC 37th Annual Meeting - November 8 - 12, 2022; Boston, Massachusetts Corresponding author: bernardo.rapoport@up.ac.za

The Medical Oncology Centre of Rosebank Personalised Cancer Care

Figure 3 A & B. Comparison of plasma levels of immune checkpoints between healthy controls, early breast cancer patients and MBC patients. Fig 3B. TIM-3 Fig 3A. LAG-3

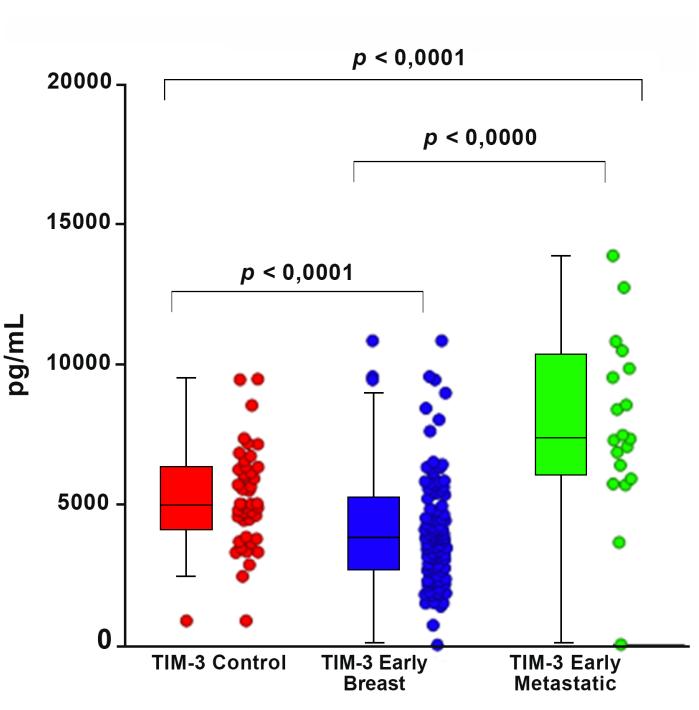
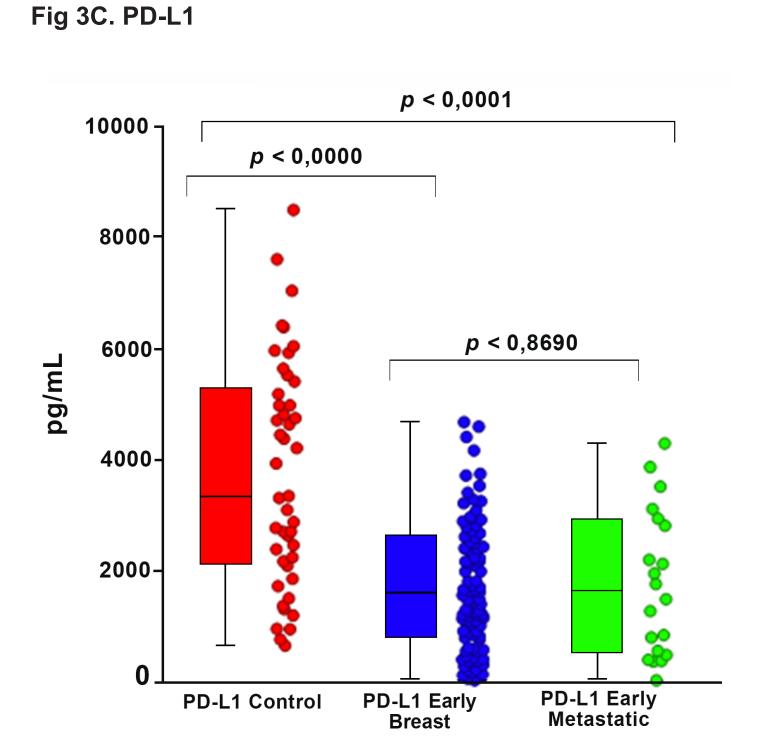
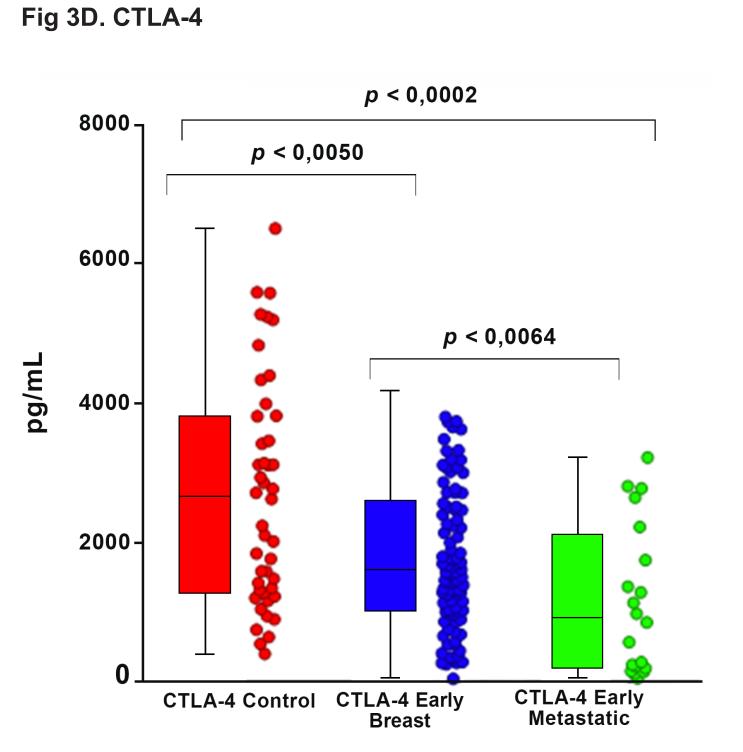
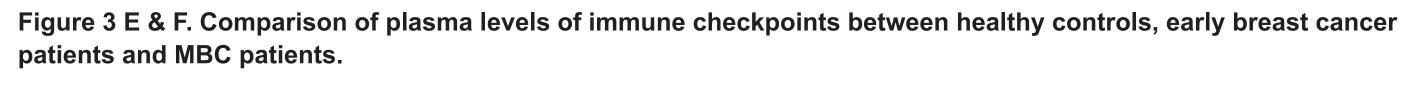
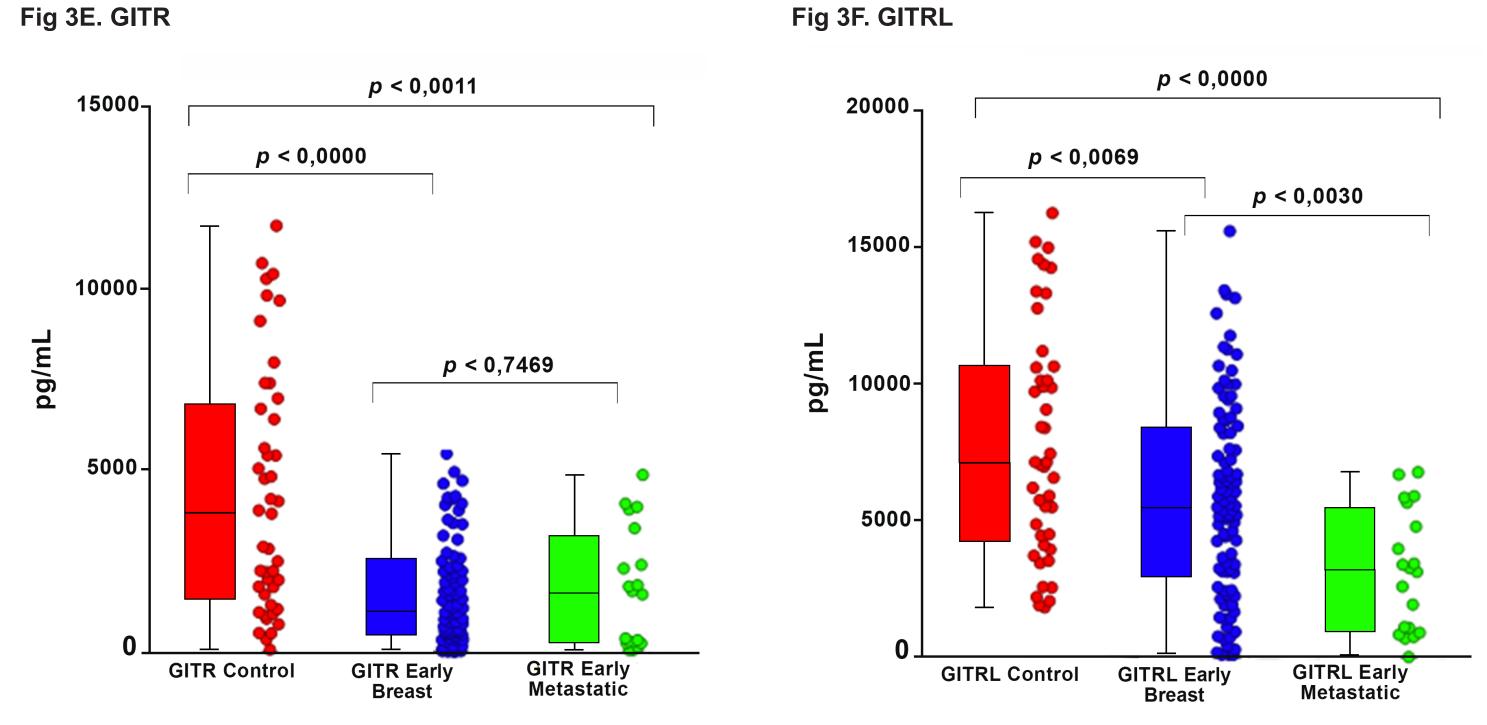






Figure 3 C & D. Comparison of plasma levels of immune checkpoints between healthy controls, early breast cancer patients and MBC patients

Future Research

> The study will be expanded, looking at disease biology (e.g., TNBC, Her-2 status, hormone status etc.) and their correlations with responses.